Change of Ca content in human vessel tissue with respect to aging and region
Tsuchi Araki, and Yoshiyuki Tohno*
Graduate School of Engineering Science, Osaka University, *Department of 1st Anatomy, Nara Medical University

Ca contents in human vessels are determined by Ar-microwave induced plasma atomic emission spectroscopy with respect to age and vessel region. In the case of arterial tissue, Ca content increases with aging. Ca contents in monkey arteries are much smaller than those in human vessels, and the difference between Ca content in upper limb and that in lower one is not evident. However, Ca content in human artery of lower limb is larger than that of upper one, and especially large in the part of elbow, thigh and knee. These results suggest that the effect of mechanical stress is one important factor for increase of Ca content in the arterial tissue.

1. 結言
動脈血管が硬化し弾性を失うと、動脈硬化症となる。これに対して、静脈血管での硬化症を耳にすることはない。また、同じ動脈でも上肢と下肢では下肢動脈の方に動脈硬化症が多いということは臨床的に言われている。したがって、血管組織の老化現象は部位によって異なり、力学的要因があると予測される。

本研究では生体老化の指標としてCa（カルシウム）元素に注目した。Caは生体が正常な機能を営むために必要な必須元素で骨格の主構成要素でもあり、ヒトの体内では1％以上存在する多量元素である。このため、その量的変化を測定しやすい。

2. 実験
2.1 実験装置
本研究で使用した装置の略図をFig.1に示す。一連の装置は我々自身で製作したものである(ref.1)。

Fig. 1 Schematic diagram of Ar-MIP AES system

2.2 サンプル
系解剖実習の献体より血管を摘出し、酸で分解した後、水で希釈し試料とした。同一検体から胸大動脈、大腿動脈、上大静脈、下大静脈、内頸静脈を採取した。

検体年齢は59歳から91歳、検体数は男性11体女性7体、計18体である。また、参照動物血管として年齢20歳と21歳のメスのアカゲサギ2体から、左右上腕動脈・大腿動脈を摘出した。また、年齢0歳・無負荷のCa含有量基準を得るため5人の妊婦から出産直後に摘出し、直接血流と脈波の測定をした。さらに、個々の血管のCa含有量の分布を調べるために、87歳の男性の上下肢動脈を連続して分析した。
3. 結果

3.1 各種ヒト血管の分析

各種ヒト血管のCa含有量の分析結果をFig.2に示す。大腿動脈、胸大動脈、内頸靜脈、上大動脈、下大動脈の18検体の平均値はそれぞれ15.5±16.2、9.29±6.91、2.43±0.63、2.23±1.04、1.59±0.51(mg/g)であった。胸動脈、肺動脈の2体の平均値は3.19±0.53、2.98±0.76(mg/g)であった(ref.2)。

成人動脈は静脈に比べてCa含有量が多く、同じ動脈でも大腿動脈の方が胸大動脈よりも大きな値となった。これに対して静脈の測定結果はほぼ同じような値となり、動脈は静脈よりもCa含有量の個人差が大きかった。肺血管のCa含有量は他の血管と同程度であり個体差も小さかった。

Ca含有量の加齢による変化に注目すると、静脈では年齢とCa含有量との間には相関は見られなかったが、動脈では加齢とともにCa含有量が増加する傾向が見られた。

3.2 アカゲザル血管の分析

2体のCa含有量の平均値は胸腹動脈、大腿動脈でそれぞれ1.44、1.34(mg/g)となった。ヒトの場合と比較してCa含有量は小さな値となり、胸腹動脈と大腿動脈では、胸腹動脈の方が多いという結果となった。しかし上腕動脈と大腿動脈の測定値の差はヒトの場合ほど顕著でなかった。

3.3 ヒト上下肢動脈のCa分布

上肢動脈（上腕動脈・橈骨動脈・尺骨動脈）を39、下肢動脈（大腿動脈・前後脛骨動脈）を59の部位に分けCa含有量を連続的に計測した。全体の平均値は7.41(mg/g)となったが、部位による変化は少ない。最大値となったのは上腕動脈の支脈であり、肘の部分よりも他と比べて大きな値となった。下肢動脈では全体の平均値は10.2(mg/g)となった。

4. 考察

ヒト血管のCa含有量は大腿動脈、胸大動脈、内頸静脈、上大動脈の順に多かった。静脈よりも動脈の方が多く、さらに同じ動脈でも大腿動脈と胸大動脈では顕著な差があった。さらに動脈では、加齢によるCa含有量の増加が見られたが、静脈血管ではCaの増加傾向が見られなかった。

動脈血管は静脈血管と比べて大きな血圧ストレスを受けており、長年化を基盤とその影響は蓄積される。ヒトにおいては、大腿動脈の方が胸大動脈よりも運動による負担が大きい。本研究の結果ではこのような機械的ストレスの負担が大きい血管にはCa含有量が多く、加齢とともにCa含有量を増加傾向にあることが考えられる。

そこでCa含有量に対する機械的ストレスの影響を検証するために、肺血管・サル血管の分析を行った。0歳～無負荷の基準とした肺血管のCa含有量は他の血管と同程度かそれ以下の値となった。一方、日常的に4足歩行を行うアカゲザルの動脈のCa含有量が上肢や下肢で同程度であった。さらに、血管の連続切断の分析においても上肢下肢とも伸縮運動の負担が大きい部位でCa含有量が多いという結果が得られた。これらの結果から、血管に対する機械的ストレスの大小とその蓄積がCa含有量に現れる。したがって日常生活での運動などの習慣も反映しているのではないかと考えられる。しかし、血管のCa含有量は食生活などの影響も受けていると思われるので、これらを考慮する必要がある。

5. 参考文献

(1) 前田、内田、荒木 第43回応物講演会予稿集,899(1996)
(2) 萩山、橋本、荒木、椋田、東野 第13回ME学会秋季講演会,54(1999)