CARS顕微鏡による細胞の観測

Observation of the living cell by CARS microscopy

1. 機能

細胞を構成するタンパク質分子の構造変化によって生体の機能は発現される。このため、
生命現象を研究する上では、生体の構造・機能
とタンパク質分子構造の関係を生体分子が実
際で生体の構造・機能している場で直接観察することが
要求される。したがって、生きたままの細胞を
その場で、非染色にタンパク質分子の構造変
化を観察することが望まれている。

従来の光学顕微鏡は、像をすなわち物体の形を
見ることを主な目的として発達してきたおり、
細胞内にはどのような分子が存在するの
か、またどのような環境下に分子、イオン等は
存在しているのか等の定性情報は染色を欠
いている。染色作業は複雑で時間がかかり練
を要する。また、染色自体が細胞に対して有害
で細胞の機能を損なう場合も多々あり、得ら
れる情報は色素を介した間接的なものである。

2. CARS顕微鏡

最近、CARS（コヒーレントアンチストーリ
スラマン散乱）を用いた顕微鏡が開発され
た[2]。CARS分光はラマン分光の一種であるた
め、非染色分子の同定が可能である。また、
非線形光学現象であるため、多光子励起蛍光
顕微鏡と同様に検出器側にビンホールを設け
なくても3次元分解能を持ち、入射するレーザ
光の波長差によってラマンスペクトルを得
ることができるために分光器が必要とせず明
るい光学系を構成できる。さらに、CARS光は
入射レーザ光より短波長であるため蛍光と分
離可能であるという特徴を持つ。

今回、指先領域を観測可能なCARS顕微鏡を
開発した。図1にCARS顕微鏡の構成図を示
す。モード同期チタンサファイアレーザ光をピ
コ秒再生増幅器（RGA）で増幅した光を、光バ
ラメトリック発信器（OPA）の励起光に用い、

![CARS显微镜示意图](image)

図1. CARS顕微鏡の構成図

Fig1. The schematic layout of the developed CARS microscopy system.
発生する波長可変なアイドラー光の第二高調波を\(\omega_2\)光に用いた。また、OPA励起光の一部を\(\omega_1\)光に用いた。この2つの光を同軸に重ね合わせ、さらに光学遅延によって時間的に重ねて透過型顕微鏡に導入する、発生するCARS光をフィルタによって\(\omega_1\)光、\(\omega_2\)光から分離し、APDによって検出する。観測可能領域はフィルタによって決まり、900-1800cm\(^{-1}\)の指紋領域での観測が可能である。CARSは非線形光学現象であるため、ピーク強度が高く平均パワーより小さい超高速レーザの使用が望まれるが、フェムト秒レーザーでは波長幅がラマンバンドより著しく大きいためラマン分光には適さない。そこで、波長幅が狭くかつピーク強度の大きいピコ秒レーザーを用いた。

3. 実験結果

図2に、発生する信号の励起光強度依存性を示す。試料は直径4.5μmのポリシリンベーゼ、レーザ光の波長は\(\omega_1 - \omega_2 = 1001\)cm\(^{-1}\)で測定を行った。CARS光の強度は、\(\omega_1\)光の2乗、\(\omega_2\)光の1乗に比例する。図を見て分かるように、観測信号は\(\omega_1\)光の2乗に良く比例した。また、\(\omega_2\)光の強度に対しては1.25乗に比例する結果となったが、強度が大きいところ（5μW以上）では良く1次に比例している（破線）。したがって、観測信号はCARSであると確認できた。

図3に、開発したCARS顕微鏡の実行分解能を検証するために、液態ペンゼンを2枚のカバーガラスで挟み込んだものを観測した結果を示す。レーザ光の集光スポットをペンゼン層からガラス層へ移動させたときの、ペンゼンのCARS光（\(\omega_1 - \omega_2 = 992\)cm\(^{-1}\)）を観測した。数値計算との比較により、ほぼ回折限界に達しており、実行分解能は2.9μmであることが分かった。

図4に、開発した装置によるCARS像を示す。図4(a)では、直径1μmのポリシリンベーゼを\(\omega_1 - \omega_2 = 1001\)cm\(^{-1}\)で観測した。各ポリシリンベーゼが分離して観測できていることから、面内分解能が1μm以下で有することが分かる。図4(b)に酵母細胞を\(\omega_1 - \omega_2 = 1215\)cm\(^{-1}\)（アミドI）において観測した結果を示す。この波長は、アミドIはタンパク質の固有のバンドであり、細胞内のタンパク質の濃度分布が観測されているものの考えられる。

謝辞 本研究は日本学術振興会未来開拓学術研究推進事業「フォトニック生体情報計測制御プロジェクト」の一環として行われた。

参考文献